A review of paper

Deep Learning for Symbolic Mathematics

Guillaume Lample, Francois Charton
Facebook AI Research

June 12, 2020

=S
Published on ICLR 2020 = g BROWN

7,
w

G3

Background

d Symbolic Mathematics
» Symbolic differentiation

» Symbolic integration

undecidable

» Symbolic simplification

» Symbolic ODEs
“ . 0 o .

Given an elementary expression, finding an elementary
symbolic integral is, in general, a search in an enormous
and strange state space for something that most of the
time does not even exist. Even if you happen to know that it
99 o

exists, it remains a very hard problem. E@. @ BROWN

--Ernest Davis

Background

d Seq2seq Modeling
» LSTM

» Transformer
ormer 7
» BERT, GPT...

x2+x+c

N O)

ENCODERS » DECODERS

- J

x+1

Wi,
SE=

e
CBBY

BROWN

Methodology

> A large corpus of examples (80 million) was created

synthetically by generating random, complex pairs of
symbolic expressions and their derivatives.

> A seq2seq transformer model is trained on the corpus.

> At testing time, A function g to integrate is fed into the
model. An answer f produced by the model was checked
using the following procedure: the symbolic
differentiator was applied to f, and then the symbolic
simplifier tested whether f’ = g.

Wi,
S

e
CBBY

BROWN

Data Generation

> Expressions as trees(one to one)

+ + -
2 X
Y~ 9 -
o~ 3 pow cos 1 8/\:1: /\
o 2 - | A~ / 0
PN 1 pow 0 t
2 N N
v 2 Y t
2+3x(5+2) 3x% 4+ cos(2x) — 1 %y _ 19%

Data Generation

> Trees as sequences(one to one)

Use prefix notation: write each node before its children, left to right

+ + -
2 X
Y~ 9 -
P 3 pow cos 1 (9/\3; /\
o 2 - | PR / 0
z 2 X v T PN PN
PN 1 pow 0 t
2 x P PN

[+2 3+ 52]

Data Generation

> Generate trees(unary-binary):

Sample uniformly from trees with n internal nodes, n fixed.

Start with an empty node, set e = 1;
while n > 0 do

Sample a position & and arity a from L(e,n) (if a = 1 the next internal node is unary);

Sample the k£ next empty nodes as leaves;

if a = 1 then

Sample a unary operator;
Create one empty child;
Sete =e — k;

end

else

Sample a binary operator;
Create two empty children;
Sete=e—k+1;

end
Setn=n—1;

end

P(L(e,n) = (k,1)) =

D(0,n)=0
D(e,0) = 1

D(e,n) = D(e—1,n) + D(e,n — 1)

D(e—kn—1)

X

k=0,a=2

@ k=1,a=2
—k,n—

—_
~—

BROWN

O
\$

7l
7
o\

/B
\B

Data Generation

62 |
g 10
a 1051 - - | =11, pl=15, p2=4 (unary-binary expressions)
@ - | =11, p1=0, p2=4 (binary expressions)
< 1041 —— L=11, p1=15, p2=1
] > — | =11, pl=0, p2=1
S 1029 - ' —— L=5, pl=0, p2=1
O 18 —— | =1, pl=1, p2=1 (unary-binary trees)
-g 10°°+ L=1, pl=0, p2=1 (binary trees)
S
> 107_

0 4 8 12 16 20 24 28
Internal nodes

(\‘\

BROWN

Data Generation

Task 1 : Integration
> Forward generation(FWD): Generate random sequences as input, then
integrate with computer algebra system as output

> Backward generation(BWD): Generate random sequences as output,
then differentiate as input

> Backward generation with integration by parts(IBP): Randomly sample
F and G, get their derivative f and g respectively.

/ngFG—/fG

If (Fg, [Fg) is already in the training dataset, then we know
[fG, thus can add (fG, [fG) to the dataset. Vice Versa.
If none of them belongs to the dataset, then resample F and G. &=

Data Generation

Task 2 : First-order ODEs (ODE 1)

output
Generate a random function f(z) = xlog(c/ x)
Solve in ¢ ¢ =gze’s = F(z, f(x))
Differentiate in z e (14 f'(z) — %a:)) =0
Simplify zy' —y+x=0

Input

Data Generation

Task 3 : Second-order ODEs (ODE 2)

output

Generate a random function f (ac) =c1e” + 026_’”
Solve in ¢y = f(z)e* — c1e** = F(z, f(x),c1)
Differentiate in (f'(z)+ f(z)) — 2¢1€** =0

: 1
Solve in ¢ = ;e " (f'(2) + f(2)) = G(z, f(2), '(2))
Differentiate in 0= %e“” (f"(z) — f(z))
Simplify y' —y=0

Input

Data Cleaning
»Equation Simplification [+2+x3] [+3+2x
NS
[+ x 5]
> Coefficients Simplification log(z?) Jlr clog(z)
clog(x)

»Invalid Expressions log(0) /=2

W77
— —

A
N ™

BROWN

Experiment

e expressions with up to n = 15 internal nodes
e [=11 leaf valuesin {z} U{-5,...,5} \ {0}
p2 = 4 binary operators: +, —, X, /

1

e p; = 15 unary operators: exp, log, sqrt, sin, cos, tan, sin"!, cos™!, tan™!, sinh, cosh, tanh,

sinh™!, cosh™!, tanh™?

The total number of trees satisfying this condition is around 103°.
After data cleaning, this number could be reduced.

Experiment

Forward Backward Integration by parts ODE 1 ODE 2
Training set size 20M 40M 20M 40M 40M
Input length 18.946.9 70.2+47.8 17.549.1 123.6+115.7 149.1£130.2
Output length 49.64+48.3 21.348.3 26.4+11.3 23.0+15.2 24.3+14.9
Length ratio 2.7 0.4 2.0 0.4 0.1
Input max length 69 450 226 508 508
Output max length 508 75 206 474 335

Table 1: Training set sizes and length of expressions (in tokens) for different datasets. FWD and IBP tend
to generate examples with outputs much longer than the inputs, while the BWD approach generates shorter
outputs. Like in the BWD case, ODE generators tend to produce solutions much shorter than their equations.

Experiment

Hyperparameters:

> A transformer model with 8 attention head, 6 layers, and a width
of 512 is applied.

» Use Adam optimizer with learning rate 0.0001.
» Remove sequences with more than 512 tokens.
> Batch size chosen to be 256.

> Beam size chosen to be 1, 10, 50.
Loss function is chosen to be the standard log-likelihood score during training.

During test, the percentage of predictions that are correct is calculated.

S
§\‘ @2

BROWN

Experiment

How to determine whether a prediction is correct or not?

transformer
Input f > g

Symbolic symplifier

Check g —f

v
()

Experiment

\ Integration (FWD) Integration (BWD) Integration (IBP) ODE (order 1) ODE (order 2)

Beam size 1 93.6 98.4 96.8 77.6 43.0
Beam size 10 95.6 99.4 99.2 90.5 73.0
Beam size 50 96.2 99.7 99.5 94.0 81.2

Table 2: Accuracy of our models on integration and differential equation solving. Results are reported
on a held out test set of 5000 equations. For differential equations, using beam search decoding significantly
improves the accuracy of the model.

\ Integration (BWD) ODE (order 1) ODE (order 2)

Mathematica (30s) 84.0 77.2 61.6
Matlab 65.2 - -
Maple 67.4 - -
Beam size 1 98.4 81.2 40.8
Beam size 10 99.6 94.0 73.2
Beam size 50 99.6 97.0 81.0

Table 3: Comparison of our model with Mathematica, Maple and Matlab on a test set of 500 equations.
For Mathematica we report results by setting a timeout of 30 seconds per equation. On a given equation, our
model typically finds the solution in less than a second.

Experiment

Transformer beat Mathematica?

Equation | Solution
' 162° — 422° + 2 ol qagt 2
V= (—16x28 + 11227 — 20426 + 28x5 — x4 + 1)1/2 y =sin" " (4x” — 14" + z7)
3zy cos(z) — /922 sin(x)2 + 1y’ + 3ysin(z) = 0 Yy = cexp (Sinh_1(3g; sin(z)))
c1 + 3z + 3log ()
dayy” —8a'y” — 8z yy 32"y —8a"y" —62"y' —3x%y" 92y’ -3y = 0 | ¥ = s

Table 4: Examples of problems that our model is able to solve, on which Mathematica and Matlab were not
able to find a solution. For each equation, our model finds a valid solution with greedy decoding.

7y
— =
N

N ™

oo BROWN

Experiment

Transformer can generate equivalent results of different forms

Hypothesis Score | Hypothesis Score
avTe) 9
—_— —0.047 —0.124
\/C+ 2 \/clo:gv(a:) + 2].Og ($)
Iz —0.056 Wz —0.139
Ve + 2z4/log (x) V/clog (z) + 2z log (z)
W2z V logl(w) 9
—0.115 —0.144
2Vc+ Vs +2¢/log ()
9z 1 —0.117 9 1 ~0.205
clog (z) + 2z log (x) ' Cl"i& + 2log () .
9M2\/x 1
—0.124 | 9z —0.232
2v/c + z+/log (x) \/clog (z) + 2z log (z) + log (z)

\ 2

Table 5: Top 10 generations of our model for the first order differential equation 162z log(z)y’ + 2y log(z)? — :m BROWN

81y log(x) + 81y = 0, generated with a beam search. All hypotheses are valid solutions, and are equivalent up
to a change of the variable c. Scores are log-probabilities normalized by sequence lengths.

Experiment

Generalization across generators

Forward (FWD) Backward (BWD) Integration by parts (IBP)
Training data Beam1 Beam 10 Beam50 | Beam1 Beam 10 Beam50 | Beam1 Beam 10 Beam 50
FWD 93.6 95.6 96.2 10.9 13.9 17.2 85.6 86.8 88.9
BWD 18.9 24.6 27.5 98.4 99.4 99.7 42.9 54.6 59.2
BWD + IBP 41.6 54.9 56.1 98.2 99.4 99.7 96.8 99.2 99.5
BWD + IBP + FWD 89.1 93.4 94.3 98.1 99.3 99.7 97.2 99.4 99.7

S
—
GBS

BROWN

[Limitations

(1 The dataset

» The functions are simple: the coefficients range in {-5, -
4, ... , 5. Could not generalize to the more sophisticated
scenario.

» If we want real-world applications, the cost of getting
these data could be huge.

(1 The model

» Highly relies on existing symbolic packages

» Hardly learning something ‘new’ — It is more like
memorizing old staffs

7,
L —
w

G3

BROWN

Advantages and possible extensions

d Advantages
» Faster prediction

» Provide a different view of looking at symbolic math
problems

d Future research:
» Neural network pruning? —

Formula generator? — within framework

Incorporate special function?

_

Reinforcement learning?
beyond framework
LD

YV V VYV V

Semisupervised learning?

P
—
CIBIELY

0] BROWN

Conclusion
[This] transformer model ... can perform extremely well both at
computing function integrals and and solving differential ><

equations, outperforming ... MATLAB or Mathematica

The transformer model outperforms Mathematica and MATLAB

in computing symbolic indefinite integrals of enormously

complex functions of a single variable ‘X’ whose integral is a much V
smaller elementary function containing no constant symbols

other than the integers —5 to 5.

S
§\‘ @2

BROWN

Transformer

(r N)

ENCODERS » DECODERS

\K*“*J -)j
! !

x1 x2 x3

The illustrated transformer,
http://jalammar.github.io/illustrated-
transformer/

Transformer

y1ly2y3

4
rf N\ 1 \\
ENCODER = DECODER
-))
))
4 N\ N
ENCODER DECODER
\) J
))
{ N N\
ENCODER DECODER
\ J J
))
4 N N
ENCODER DECODER
-))
) /)
{ N\ N
ENCODER DECODER
-))
/) /)
{ N N\
ENCODER DECODER
- J
U T f T ')
x1 x2 x3

The illustrated transformer,
http://jalammar.github.io/illustrated-
transformer/

—
N ™

BROWN

Transformer

convection Feed Forward Neural Network
1 —
diffusion Self-Attention

o~

The illustrated transformer,
http://jalammar.github.io/illustrated-
transformer/

Transformer

Self Attention
%1 = 21, + Concat (heady, ..., head ;) WO,

(k) V,l & exp(e; (s)) V,l
where head;, = Za [acl,JWk]—Z > [xl,jWk’)

k
71=1 71=1 qlexp(())

and e() is computed as the dot product of input x; ; and x; ; with linear projection matrices WQ l
and W,f“ e, et =d 2 (@ W @ WiEHT.

mode_l

Feed forward neural network ZTit1,: = T1; + FFNWé% (Z1.4),

Thank you.

W7y
-
™

BROWN

