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Introduction

Denote the d-by-d identity matrix by Id , let

J :=

(
0 Id
−Id 0

)
.

In consideration of the Hamiltonian system{
ẏ = J−1∇H(y)

y(t0) = y0
, (1)

where y(t) ∈ R2d , and H is the Hamiltonian function, usually
representing the energy of the system. Let φh(y) be the phase
transformation of above system, i.e., φh(y0) = y(t0 + h). φh(y) in
fact gives the next phase point after time step h with respect to
the phase point y .
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Introduction

Definition

A matrix H ∈ R2d×2d is called symplectic if HT JH = J.

Definition

A differentiable map Φ : U → R2d (where U ⊂ R2d is an open set)
is called symplectic if the Jacobian matrix ∂Φ

∂x is everywhere
symplectic, i.e., (

∂Φ

∂x

)T

J

(
∂Φ

∂x

)
= J.
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Introduction

The connection between Hamiltonian system and symplectic map:

In 1899, Poincare pointed out that the phase transformation of the
Hamiltonian system is a symplectic map, i.e.,(

∂φh
∂x

)T

J

(
∂φh
∂x

)
= J.

“It is natural to look forward to those discrete systems which
preserve as much as possible the intrinsic properties of the
continuous system.” (Kang Feng, 1984)
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Introduction

Forward problem: solve the Hamiltonian system by
symplectic integrators, such as the mid-point rule:

ȳ = y + hJ−1∇H(
ȳ + y

2
).

(It is straightforward to verify that
(
∂ȳ
∂y

)T
J
(
∂ȳ
∂y

)
= J)

Inverse problem: how to discover the Hamiltonian system,
given the data of phase points from a unknown Hamiltonian
system?

We know less about the inverse problem, while the forward
problem is well developed.
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Introduction

Problem setup:

Given the dataset {(xi , yi )} satisfying φh(xi ) = yi , to predict the
phase flow φh(x), φ2

h(x), φ3
h(x) · · · , where φ2

h(x) means φh ◦ φh(x).

Mostly, the dataset {(xi , yi )} can be a series of phase points
depending on time, i.e., {(xi , xi+1)} where φh(xi ) = xi+1.
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Introduction

Hamiltonian neural networks (NIPS 2019)
by Samuel Greydanus, Misko Dzamba, Jason Yosinski.

Using a neural network to approximate the Hamiltonian H with loss

‖dy
dt
− J−1∇H̃(y)‖,

and the time derivative is discretized by a numerical integrator (in
fact should be a symplectic integrator, they did not mention this
point, but it is indeed needed, proved by other later works). For
example, with mid-point rule,

‖xi+1 − xi
h

− J−1∇H̃(
xi + xi+1

2
)‖.

Finally computing the predicted flow with the trained network H̃.
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Introduction

Another strategy: directly learn the phase transformation φh.

To this end, we expect to construct the neural networks preserving
the symplecticity. Our architecture design philosophy is based on
the fact that the composition of symplectic maps is again
symplectic.
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Purpose

To construct the symplectic networks, we have to search for
satisfactory unconstrained parametrization of symplectic matrices.
We first show some existing modern factorizations.

Denote the collection of symplectic matrices by

SP = {H ∈ R2d×2d |HT JH = J}.
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The modern factorizations

Most of the factorizations require cells like
symplectic-orthogonal matrices, which are not elementary
enough hence hard to be freely parameterized.

Transvections factorization needs O(d) generators.

We need a more elementary unconstrained factorization, since
the deep learning techniques focus on the unconstrained
optimization.
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Unit triangular factorization

Unit triangular symplectic matrices(
I S
0 I

)
,

(
I 0
S I

)
, ST = S

We can rewrite the symmetric S as (W T + W ) in practice, then the W
is unconstrained. Denote

Ln =

{(
I 0/Sn

Sn/0 I

)
· · ·
(
I S3

0 I

)(
I 0
S2 I

)(
I S1

0 I

) ∣∣∣∣∣
Si ∈ Rd×d ,ST

i = Si , i = 1, 2, · · · , n

}
,

where the unit upper triangular symplectic matrices and the unit lower
triangular symplectic matrices appear alternately. And it is clear that
Lm ⊂ Ln ⊂ SP for all integers 1 ≤ m ≤ n.
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Unit triangular factorization

Theorem (Unit Triangular Factorization)

SP = L9.

Thus any symplectic matrix can be factored into no more than 9
unit triangular symplectic matrices. Only O(1) generators.

Unit triangular factorization of the matrix symplectic group
(2019, by Pengzhan Jin, Yifa Tang, Aiqing Zhu.)
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SympNets

Linear Modules

Ln(x) =

(
I 0/Sn

Sn/0 I

)
· · ·

(
I 0
S2 I

)(
I S1

0 I

)
x + b, x , b ∈ R2d , ST

i = Si .

Here Si = WT
i + Wi ∈ Rd×d , and Wi are the network parameters to be

optimized.

Activation Modules

Nup

(
p
q

)
=

[
I σ̃a
0 I

](
p
q

)
:=

(
p + diag(a)σ(q)

q

)
, Nlow

(
p
q

)
=

[
I 0
σ̃a I

](
p
q

)
.

Here a ∈ Rd is the network parameter to be optimized.

Gradient Modules

Gup
(
p
q

)
=

[
I σ̂K ,a,b

0 I

](
p
q

)
:=

(
p + KTdiag(a)σ(Kq + b)

q

)
,

Glow
(
p
q

)
=

[
I 0

σ̂K ,a,b I

](
p
q

)
.

Here K ∈ Rm×d , a, b ∈ Rm are the network parameters to be optimized.
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SympNets

Remark

The term “gradient module”: we proved that σ̂K ,a,b can approximate any ∇f
for f : Rd → R.

ML = {ψ|ψ is a linear module}.
MA = {ψ|ψ is an activation module}.
MG = {ψ|ψ is a gradient module}.

Definition

Consider {vi}k+1
1 ⊂ML, {wi}k1 ⊂MA. Let

ψ = vk+1 ◦ wk ◦ vk ◦ · · · ◦ w1 ◦ v1.

ψ is called the LA-SympNet. We define the collection of all the LA-SympNets
as

ΨLA = {ψ|ψ is a LA-SympNet}.
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SympNets

Definition

Consider {ui}k1 ⊂MG . Let

ψ = uk ◦ uk−1 ◦ · · · ◦ u1.

ψ is called the G-SympNet. We define the collection of all the G-SympNets as

ΨG = {ψ|ψ is a G -SympNet}.

Definition

Consider {vi}k1 ⊂ML ∪MA ∪MG , where ML, MA and MG are the set of
linear, activation and gradient modules respectively. Let

ψ = vk ◦ vk−1 ◦ · · · ◦ v1.

ψ is called the symplectic network (SympNet). Futhermore, we define the
collection of all the SympNets as

Ψ = {ψ|ψ is a symplectic network}.
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SympNets
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Figure 1: Architecture of SympNet. The SympNet can be seen as the
neural network with a specific connection pattern, which gaurantees
symplecticity. Here Ti can be chosen as S , σ̃ or σ̂, depending on which
type of module it belongs to.
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Approximation theorems

SP r (U) =

{
Φ ∈ C r (U;R2d)

∣∣∣∣∣
(
∂Φ

∂x

)T

J

(
∂Φ

∂x

)
= J

}
.

Definition

Let r ∈ {0} ∪ N be given. σ is r -finite if σ ∈ C r (R) and
0 <

∫
|Dr (σ)|dλ <∞, where λ is the Lebesgue measure on R.

Theorem (Approximation theorem for G-SympNet)

If the activation function σ is r -finite, then the set of G-SympNet ΨG is
r -uniformly dense on compacta in SP r (U).

Theorem (Approximation theorem for LA-SympNet)

If the activation function σ is r -finite, then the set of LA-SympNet ΨLA

is r -uniformly dense on compacta in SP r (U).
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Three body problem
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Figure 2: Results for the three-body system. (Top-left) One
trajectory from the training dataset. (Top-middle) The global error
versus time. (Top-right) The total energies for the predictions on the
representative trajectory. (Bottom) Predicted position q on the
representative trajectory.
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Extension

Definition

If a matrix-valued function B(y) is anti-commutative, bilinear and satisfies
Leibniz’s rule then

({F ,G}B)(y) = ∇F (y)TB(y)∇G(y), (2)

defines a Poisson bracket, and the corresponding differential system

ẏ = B(y)∇H(y)

is a Poisson system. Here H is still called a Hamiltonian.

Up to now, the Hamiltonian system and the Poisson system have been unified
as

ẏi = {yi ,H}B , i = 1, · · · , n, (3)

for B satisfying the previous lemma, and the system becomes Hamiltonian
when B = J−1.
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Darboux-Lie theorem

Theorem (Darboux 1882, Lie 1888)

Suppose that the matrix B(y) defines a Poisson bracket and is of
constant rank n − q = 2d in a neighbourhood of y0 ∈ Rn. Then,
there exist functions P1(y), · · · ,Pd(y), Q1(y), · · · ,Qd(y), and
C1(y), · · · ,Cq(y) such that y → (Pi (y),Qi (y),Ck(y)) constitutes
a local change of coordinates to canonical form. With this change
of coordinates, the Poisson system ẏ = B(y)∇H(y) becomes

ż = B0∇K (z) with B0 =

(
J−1 0

0 0

)
,

where K (z) = H(y). Writing z = (p, q, c), this system becomes

ṗ = −Kq(p, q, c), q̇ = Kp(p, q, c), ċ = 0.
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Poisson Neural Networks
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Figure 3: Architecture of PNN. PNNs are composed of three parts: (1)
a transformation, (2) an extended symplectic map, and (3) the inverse of
the transformation, denoted by θ, Φ, and θ−1 respectively.
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Neural ODE, PNN and SympNet

Dynamical system

Poisson system 

Hamiltonian 
system 

Neural ODE

PNN

SympNets

Figure 4: Neural ODE, PNN and SympNet. Prior knowledge used:
SympNet > PNN > Neural ODE; Model expressivity: Neural ODE >
PNN > SympNet.
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Charged particle in an electromagnectic potential
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Figure 5: Charged particle in the electromagnetic potential.
(Top-left) The position (x1, x2) of training flow. (Top-right) Prediction
of the VP-PNN starting at the end point of training flow for 2000 steps.
(Bottom) Prediction of the position of particle over time.
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Nonlinear Schrödinger equation
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Figure 6: Ablowitz–Ladik model of nonlinear Schrödinger equation.
Predictions of both real and imaginary parts match the ground truth well.
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Pixel observations of two-body problem
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Figure 7: Long time prediction and frame interpolation for two body
images. (Top) Ground truth, four consecutive points in the test dataset,
after t = 6000 with step size h = 0.6. (Bottom) Predictions made by
the PNN, with a finer step size h = 0.3. (All) PNNs can handle
long-time integration and frame interpolation perfectly.
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Summary

We solve the inverse problem for Hamiltonian and Poisson
systems using neural networks (SympNets and PNNs).

Universality theorems are established.

Applications to the prediction of ODEs, PDEs.

Future work: Control problem, molecular dynamics.
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