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Introduction

Denote the d-by-d identity matrix by Id , let

J :=

(
0 Id
−Id 0

)
.

In consideration of the Hamiltonian system{
ẏ = J−1∇H(y)

y(t0) = y0
, (1)

where y(t) ∈ R2d , and H is the Hamiltonian function, usually
representing the energy of the system. Let φh(y) be the phase
transformation of above system, i.e., φh(y0) = y(t0 + h). φh(y) in
fact gives the next phase point after time step h with respect to
the phase point y .
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Introduction

Definition

A matrix H ∈ R2d×2d is called symplectic if HT JH = J.

Definition

A differentiable map Φ : U → R2d (where U ⊂ R2d is an open set)
is called symplectic if the Jacobian matrix ∂Φ

∂x is everywhere
symplectic, i.e., (

∂Φ

∂x

)T

J

(
∂Φ

∂x

)
= J.
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Introduction

The connection between Hamiltonian system and symplectic map:

In 1899, Poincare pointed out that the phase transformation of the
Hamiltonian system is a symplectic map, i.e.,(

∂φh

∂x

)T

J

(
∂φh

∂x

)
= J.

“It is natural to look forward to those discrete systems which
preserve as much as possible the intrinsic properties of the
continuous system.” (Kang Feng, 1984)
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Introduction

Forward problem: solve the Hamiltonian system by
symplectic integrators, such as the mid-point rule:

ȳ = y + hJ−1∇H(
ȳ + y

2
).

(It is straightforward to verify that
(
∂ȳ
∂y

)T
J
(
∂ȳ
∂y

)
= J)

Inverse problem: how to discover the Hamiltonian system,
given the data of phase points from a unknown Hamiltonian
system?

We know less about the inverse problem, while the forward
problem is well developed.
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Introduction

Problem setup:

Given the dataset {(xi , yi )} satisfying φh(xi ) = yi , to predict the
phase flow φh(x), φ2

h(x), φ3
h(x) · · · , where φ2

h(x) means φh ◦ φh(x).

Mostly, the dataset {(xi , yi )} can be a series of phase points
depending on time, i.e., {(xi , xi+1)} where φh(xi ) = xi+1.
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Introduction

Hamiltonian neural networks (NIPS 2019)
by Samuel Greydanus, Misko Dzamba, Jason Yosinski.

Using a neural network to approximate the Hamiltonian H with loss

‖dy

dt
− J−1∇H̃(y)‖,

and the time derivative is discretized by a numerical integrator (in
fact should be a symplectic integrator, they did not mention this
point, but it is indeed needed, proved by other later works). For
example, with mid-point rule,

‖xi+1 − xi

h
− J−1∇H̃(

xi + xi+1

2
)‖.

Finally computing the predicted flow with the trained network H̃.
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Introduction

Another strategy: directly learn the phase transformation φh.

To this end, we expect to construct the neural networks preserving
the symplecticity. Our architecture design philosophy is based on
the fact that the composition of symplectic maps is again
symplectic.
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Purpose

To construct the symplectic networks, we have to search for
satisfactory unconstrained parametrization of symplectic matrices.
We first show some existing modern factorizations.

Denote the collection of symplectic matrices by

SP = {H ∈ R2d×2d |HT JH = J}.
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The modern factorizations

Theorem (QR-like factorization)

The set of 2d-by-2d symplectic matrices is

SP =

{
Q

(
R RS
0 R−T

) ∣∣∣∣∣R ∈ Rd×d upper triangular

Q symplectic orthogonal , S symmetric

}
.

Theorem (Polar factorization)

The set of 2d-by-2d symplectic matrices is

SP =

{
QP

∣∣∣∣∣P = PT symplectic positive definite

Q symplectic orthogonal

}
.

Theorem (SVD-like factorization)

The set of 2d-by-2d symplectic matrices is

SP =

U

(
Ω 0
0 Ω−1

)
V T

∣∣∣∣∣
U,V symplectic orthogonal

Ω = diag(ω1, · · ·, ωd )

ω1 ≥ · · · ≥ ωd ≥ 1

 .
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The modern factorizations

Transvections factorization. The symplectic group is generated
by so-called symplectic transvections.

Definition

For 0 6= u ∈ R2d and 0 6= β ∈ R, the matrix

G = I + βuuT J ∈ R2d×2d

is symplectic, and G is called a symplectic transvection.

Theorem

The set of 2d-by-2d symplectic matrices is

SP =

{
G1G2 · · ·Gm

∣∣∣∣∣Gi a symplectic transvection

m ≤ 4d

}
.
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The modern factorizations

Most of the factorizations require cells like
symplectic-orthogonal matrices, which are not elementary
enough hence hard to be freely parameterized.

Transvections factorization needs O(d) generators.

We need a more elementary unconstrained factorization, since
the deep learning techniques focus on the unconstrained
optimization.
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Unit triangular factorization

Unit triangular symplectic matrices(
I S
0 I

)
,

(
I 0
S I

)
, ST = S

We can rewrite the symmetric S as (W T + W ) in practice, then the W
is unconstrained. Denote

Ln =

{(
I 0/Sn

Sn/0 I

)
· · ·
(

I S3

0 I

)(
I 0

S2 I

)(
I S1

0 I

) ∣∣∣∣∣
Si ∈ Rd×d ,ST

i = Si , i = 1, 2, · · · , n

}
,

where the unit upper triangular symplectic matrices and the unit lower
triangular symplectic matrices appear alternately. And it is clear that
Lm ⊂ Ln ⊂ SP for all integers 1 ≤ m ≤ n.
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Unit triangular factorization

Theorem (Unit Triangular Factorization)

SP = L9.

Thus any symplectic matrix can be factored into no more than 9
unit triangular symplectic matrices. Only O(1) generators.

Unit triangular factorization of the matrix symplectic group
(2019, by Pengzhan Jin, Yifa Tang, Aiqing Zhu.)
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SympNets

Linear Modules

Ln(x) =

(
I 0/Sn

Sn/0 I

)
· · ·
(

I 0
S2 I

)(
I S1

0 I

)
x + b, x , b ∈ R2d , ST

i = Si .

Here Si = W T
i + Wi ∈ Rd×d , and Wi are the network parameters to be

optimized.

Activation Modules

Nup

(
p
q

)
=

[
I σ̃a

0 I

](
p
q

)
:=

(
p + diag(a)σ(q)

q

)
, Nlow

(
p
q

)
=

[
I 0
σ̃a I

](
p
q

)
.

Here a ∈ Rd is the network parameter to be optimized.

Gradient Modules

Gup

(
p
q

)
=

[
I σ̂K ,a,b

0 I

](
p
q

)
:=

(
p + K T diag(a)σ(Kq + b)

q

)
,

Glow

(
p
q

)
=

[
I 0

σ̂K ,a,b I

](
p
q

)
.

Here K ∈ Rm×d , a, b ∈ Rm are the network parameters to be optimized.
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SympNets

Remark

The term “gradient module”: we proved that σ̂K ,a,b can approximate any ∇f
for f : Rd → R.

ML = {ψ|ψ is a linear module}.
MA = {ψ|ψ is an activation module}.
MG = {ψ|ψ is a gradient module}.

Definition

Consider {vi}k+1
1 ⊂ML, {wi}k

1 ⊂MA. Let

ψ = vk+1 ◦ wk ◦ vk ◦ · · · ◦ w1 ◦ v1.

ψ is called the LA-SympNet. We define the collection of all the LA-SympNets
as

ΨLA = {ψ|ψ is a LA-SympNet}.
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SympNets

Definition

Consider {ui}k
1 ⊂MG . Let

ψ = uk ◦ uk−1 ◦ · · · ◦ u1.

ψ is called the G-SympNet. We define the collection of all the G-SympNets as

ΨG = {ψ|ψ is a G -SympNet}.

Definition

Consider {vi}k
1 ⊂ML ∪MA ∪MG , where ML, MA and MG are the set of

linear, activation and gradient modules respectively. Let

ψ = vk ◦ vk−1 ◦ · · · ◦ v1.

ψ is called the symplectic network (SympNet). Futhermore, we define the
collection of all the SympNets as

Ψ = {ψ|ψ is a symplectic network}.
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SympNets
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Figure 1: Architecture of SympNet. The SympNet can be seen as the
neural network with a specific connection pattern, which gaurantees
symplecticity. Here Ti can be chosen as S , σ̃ or σ̂, depending on which
type of module it belongs to.
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Algebraic structure of SympNets

We show the main theorems.

Theorem (Group structure)

The collection of all the symplectic networks Ψ is a group.

Theorem (Group structure)

The collection of all the LA(G)-SympNets ΨLA(ΨGS ) is a group.

Proof. (
I S
0 I

)−1

=

(
I −S
0 I

)
[

I σ̃a

0 I

]−1

=

[
I −σ̃a

0 I

]
,

[
I σ̂K ,a,b

0 I

]−1

=

[
I −σ̂K ,a,b

0 I

]
.



Introduction Parametrization of symplectic matrices Symplectic networks Numerical results End

Algebraic structure of SympNets

It is noteworthy that we can easily obtain the inverse network of a
SympNet! For example:

φ(x) =

(
I 0

S3 I

)[
I σ̃a

0 I

](
I 0

S2 I

)(
I S1

0 I

)
x ,

then

φ−1(x) =

(
I −S1

0 I

)(
I 0
−S2 I

)[
I −σ̃a

0 I

](
I 0
−S3 I

)
x .
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Approximation theorems

SP r (U) =

{
Φ ∈ C r (U;R2d )

∣∣∣∣∣
(
∂Φ

∂x

)T

J

(
∂Φ

∂x

)
= J

}
.

Definition

Let r ∈ {0} ∪ N be given. σ is r -finite if σ ∈ C r (R) and
0 <

∫
|Dr (σ)|dλ <∞, where λ is the Lebesgue measure on R.

Theorem (Approximation theorem for G-SympNet)

If the activation function σ is r -finite, then the set of G-SympNet ΨG is
r -uniformly dense on compacta in SP r (U).

Theorem (Approximation theorem for LA-SympNet)

If the activation function σ is r -finite, then the set of LA-SympNet ΨLA

is r -uniformly dense on compacta in SP r (U).
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Approximation theorems

In practice we use the sigmoid as the activation function. Sigmoid
is r − finite for arbitrary r > 0.
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Numerical results

Figure 2: Example of Training Dataset

Only one trajectory is simulated, want to make one-shot
prediction.
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Comparison with HNN

Advantages of SympNet:

Relatively smaller parameter size (LA-SympNet).

Can handle sparsely-sampled data.

Can scale better to higher dimensions.

Will converge to the ground truth when the network size
increases, while HNN converging to the modified system due
to the discretization.

Don’t need to manually choose numerical integrator, can
handle nonseparable Hamiltonian much more easily.

Faster in training and predicting.

Advantages of HNN:

Can handle irregularly sampled data.
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Pendulum

Mathematical pendulum (mass m = 1, massless rod of length
l = 1, gravitational acceleration g = 1) which is a system with one
degree of freedom having the Hamiltonian

H(p, q) =
1

2
p2 − cos(q).

We obtain the flow starting from (0, 1.0) with 30 points and time
step 0.1 as the training data, i.e., T = {(xi−1, xi )}n

1 where n = 30,
x0 = (0, 1.0).

LA-SympNet can learn the dynamics of this pendulum
perfectly with only 14 parameters.
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Pendulum

Energy is conserved perfectly by LA-SympNet.

Even if we increase the parameter size of HNN, it is still not
comparable with LA-SympNet.
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Pendulum V2

Now we sample data sparsely: choose time step dt = 1.5.

HNN fails since its loss function involves discretization in time.
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Two Body Problem

We try to model the 2-body problem with Hamiltonian

H =
|p2

CM |
m1 + m2

+
|p1|2 + |p2|2

2µ
+ g

m1m2

|q1 − q2|2

For simplicity, assume m1 = m2 = g = 1. We simulate a
trajectory, and use one period as training dataset. We initialize the
trajectory with center of mass zero, total momentum 0, and radius
|q1 − q2| in the range [0.5, 1.5].
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Two Body Problem

Figure 3: Result for 2-body problem

Still tuning hyperparameters for LA-SympNet.
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Possible Future Work

Handle irregularly sampled data?

More difficult dataset, PDEs.

Applications to normalizing flows.

Symplectic RNN.

...
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Thanks!
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