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Problem Setup

du
dt = F (u) = Lu + h(u), u(t) ∈ Rn, where n is a large number.

We are specifically interested in systems whose dynamics results in a
intrinsically low dimensional globally attracting manifold.

Figure: Example of a Globally Attracting Manifold
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Problem Setup

Goal:

Dimensionality Reduction of the ODE

Derive an ODE in a low dimensional subspace, which preserves as
much dynamical property of original ODE as possible.

Ansatz:
u = Yξ + Zη + b (1)

where the columns of matrix Y = [y1, ..., ym] form an orthonormal basis of
Y , an m-dimensional subspace of Rd , and the columns of
Z = [z1, ..., zd−m] make up an orthonormal basis for the orthogonal
complement Z = Rd \ Y ; ξ and η are the projection coordinates
associated with Y and Z.
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Problem Setup

How to get Y and Z?

Randomly sample 10000 points on the attractor, denoted as X.

Do PCA on these datapoints:
Let C = XTX , then Y = [y1, ..., ym], where [y1, ..., ym] are the
eigenvectors of C corresponding to the m largest eigenvalues of C .
Z = [z1, ..., zd−m], where [z,..., zd−m] are the rest of eigenvectors of C .

Back to equation (1), we know Y , Z and the ODE for u, can we have the
ODE for ξ?
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Flat Galerkin Method

Plug (1) back to the ODE, we get

dξ

dt
= Y TLY ξ + Y TLZη + Y Th(Y ξ + Zη + b) + Y TLb (2)

If |η| << |ξ|, then we may assume η = 0, leading to a m-dimensional
system:

dξ

dt
= Y TLY ξ + Y Th(Y ξ + b) + Y TLb = Fξ(ξ) (3)

This is called the Flat Galerkin Method.
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Nonlinear Galerkin Projection

Problems:

η = 0 may be too strict.

Z is derived merely based on statistical properties of the manifold
without addressing the dynamics. This implies that even if η has
small magnitude on average it may play a big role in the dynamics of
the space.

Existing solution: Let η = Φ(ξ), then

dξ

dt
= Y TLY ξ + Y TLZΦ(ξ) + Y Th(Y ξ + ZΦ(ξ) + b) + Y TLb (4)

This is called the Nonlinear Galerkin Projection Method.
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Nonlinear Galerkin Projection

Problems:

Φ has to be found empirically.

Φ may not be well-defined!

Figure: Example of a Globally Attracting Manifold
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Data-driven Method

Proposed Data-driven solution:

dξ

dt
= Y TLY ξ + Y TLZη + Y Th(Y ξ + Zη + b) + Y TLb (5)

rewritten as
dξ

dt
= Fξ(ξ) + G (ξ, η) (6)

Try to learn G from the data.
Assumption: Ψ(t) = G (ξ(t), η(t)) ≈ Ĝ (ξ(t), ξ(t − τ), ξ(t − 2τ), ...)
What is Ĝ? LSTM...
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LSTM

Figure: Architecture of the First Proposed Model

Loss: L =
∑p

i=1 wi ||Ψ̂i −Ψi ||2, where wi =

{
w0 0 < i ≤ pt

1 pt < i ≤ p
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LSTM

Problem:

Input representing the ξ is always accurate regardless of any errors
made in predicting the dynamics previously, i.e. the model only learns
to predict one step ahead.
This is undesirable especially for chaotic systems where errors tend to
grow exponentially.

Figure: Architecture of the Second Proposed Model
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LSTM

Loss for the second model:
L =

∑p
i=1 wi ||Ψ̂i + Fξ(ξ̂i )− ξ̇i ||2, where wi = γ i−1, 0 < γ < 1.

Use first model for pre-training, use second model for fine-tuning and
prediction.

An alternative to the method proposed is fully data-driven modeling, which
simply make predictions of ξ based on previous observed ξs. It is shown
that this fully data-driven model is worse in the numerical experiments.

Zhen Zhang Reduced-order Modeling January 24, 2020 13 / 28



Table of Contents

1 Problem Setup

2 Materials and Methods

3 Result and Discussion

4 Conclusion

Zhen Zhang Reduced-order Modeling January 24, 2020 14 / 28



CDV

Figure: CDV Equations

(x∗1 , x
∗
4 ,C , β, γ, b) = (0.95,−0.760955, 0.1, 1.25, 0.2, 0.5). Use 10000

trajectories, 80% for training, 10% for validation, 10% for test. nLSTM = 1,
nFC = 16. Try to predict p = 200 time steps ahead, with δt = 0.01.
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CDV
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Results
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Intermittent bursts of dissipation in Kolmogorov
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Intermittent bursts of dissipation in Kolmogorov

The Kolmogorov flow admits a laminar solution ux = Re/k2f sin(kf y),
uy = 0. For sufficiently large kf and Re, this laminar solution is
unstable, chaotic and exhibiting intermittent surges in energy input I
and dissipation D.

Study the flow under a particular set of parameters Re = 40 and
kf = 4 for which there is the occurrence of extreme events.
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Intermittent bursts of dissipation in Kolmogorov
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Intermittent bursts of dissipation in Kolmogorov

In the reduced model,
Let ξ1 = a(0, kf ), ξ2 = a(1, 0), ξ3 = a(1, kf ),
ξ4, ξ5, ξ6 are the conjugate pairs of ξ1, ξ2, ξ3.

This is because in the interest of predicting I and D, the most
revealing interaction to observe is among these nodes.

However, only 59% energy are contained in these nodes, so a simple
linear projection could lead to a bad result.
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Intermittent bursts of dissipation in Kolmogorov

nLSTM = 70, nFC = 38. Number of time steps in setup stage = 100,
progressively increase number of time steps in prediction stage from
{10, 30, 50, 100}.
100000 trajectories, 80% training, 5% validation, 15% test.

nepochs = 1000, batch size = 250, pt = 60, w0 = 0.01, γ = 0.98.
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Intermittent bursts of dissipation in Kolmogorov
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Intermittent bursts of dissipation in Kolmogorov
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Intermittent bursts of dissipation in Kolmogorov
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Conclusion

Goal of the paper: Dimensionality Reduction of ODEs

Approach: Data + ODE Prior (Physics-informed LSTM?)

Testcases on CDV and Navier-Stokes Equations
Also show the ability to predict rare events

Possible future research: Singular perturbation?
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The End
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