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Problem Setup

o 4 — F(u) = Lu+ h(u), u(t) € R", where n is a large number.
@ We are specifically interested in systems whose dynamics results in a

intrinsically low dimensional globally attracting manifold.

projection

= true § dynamics
— flat Galerkin
— nonlinear Galerkin

Figure: Example of a Globally Attracting Manifold
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Problem Setup

Goal:
@ Dimensionality Reduction of the ODE
@ Derive an ODE in a low dimensional subspace, which preserves as
much dynamical property of original ODE as possible.
Ansatz:
u=Y¢+2Zn+b (1)

where the columns of matrix Y = [y1, ..., ym] form an orthonormal basis of
Y, an m-dimensional subspace of R, and the columns of
Z=z,...,zg_m| make up an orthonormal basis for the orthogonal
complement Z =R?\ Y; ¢ and 7 are the projection coordinates
associated with Y and Z.
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Problem Setup

How to get Y and Z7

@ Randomly sample 10000 points on the attractor, denoted as X.

@ Do PCA on these datapoints:
Let C = XX, then Y = [y1, ..., ¥m|, Where [y1, ..., ym] are the
eigenvectors of C corresponding to the m largest eigenvalues of C.
Z=|z,...,24g—m), Where [z ..., z4_ ] are the rest of eigenvectors of C.

Back to equation (1), we know Y, Z and the ODE for u, can we have the
ODE for &7
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Flat Galerkin Method

Plug (1) back to the ODE, we get

‘:f YTLYE+YTLZn+YTh(YE+Zn+b)+ YT Lb (2)
If |n| << |£], then we may assume 1 = 0, leading to a m-dimensional
system:

% = YTLYE+ YTh(YE+b) + YT Lb = Fe(6) (3)

This is called the Flat Galerkin Method.
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Nonlinear Galerkin Projection

Problems:
@ 1 = 0 may be too strict.

@ Z is derived merely based on statistical properties of the manifold
without addressing the dynamics. This implies that even if 7 has
small magnitude on average it may play a big role in the dynamics of
the space.

Existing solution: Let n = ®(¢), then

% =YTLYE+YTLZOE) + YTh(YE+ZO(E)+b)+ YL (4)

This is called the Nonlinear Galerkin Projection Method.
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Nonlinear Galerkin Projection

Problems:
@ & has to be found empirically.

@ ® may not be well-defined!

projection

= true § dynamics
— flat Galerkin
— nonlinear Galerkin

Figure: Example of a Globally Attracting Manifold
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Data-driven Method

Proposed Data-driven solution:

d
ch =YTLYE+YTLZy+ YT Th(YE+Zn+b)+YTLb (5)

rewritten as o
4 = Fe) +G(&m) (6)

Try to learn G from the data. A
Assumption: W(t) = G(&(t),n(t)) = G(&(t),&(t — 7),&(t — 27),...)
What is G? LSTM...
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Figure: Architecture of the First Proposed Model

wo 0<i<p;

Loss: L=  w;||¥; — W| 2, where w; = .
a 1 pe<i<p
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LSTM

Problem:
@ Input representing the £ is always accurate regardless of any errors
made in predicting the dynamics previously, i.e. the model only learns

to predict one step ahead.
@ This is undesirable especially for chaotic systems where errors tend to

grow exponentially.

(n

prediction stage =~ ————————————|

Figure: Architecture of the Second Proposed Model
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LSTM

@ Loss for the second model:
L=" wi|U; + Fe(&) — &7, where w; ="~ 0 <y < 1.

@ Use first model for pre-training, use second model for fine-tuning and
prediction.

An alternative to the method proposed is fully data-driven modeling, which
simply make predictions of £ based on previous observed &s. It is shown
that this fully data-driven model is worse in the numerical experiments.
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*, = yix, — Clx, — x7), %y = —(o %, — By)x; — Cx, — 6,x,%,

%3 = (%, — B)%, — %, — Cxy +0,x,%5, X, = p3%, — C(x, — x}) + £(%x,%5 — x,%;),
%5 = — (%) — Ba)xs — Cxty — 6,23, Ko = (opX, — B2)xs — 5%y — Cxg + 0y%,%,,
where the model coefficients are given by

_8V2mA (b +m® — 1) pb?

" A - ) P T e
6420 —m? + 1 4v/2mb
"= 5n B +m? In = yn(4m2 -1)’
_16v2 _ 4v2m’b
" o5m m = y7r(4m2 —1)(b2 + m2)’

Figure: CDV Equations

(xt,xt, C, B,, b) = (0.95,—0.760955,0.1,1.25,0.2,0.5). Use 10000
trajectories, 80% for training, 10% for validation, 10% for test. n sty = 1,
ngc = 16. Try to predict p = 200 time steps ahead, with 6t = 0.01.
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Fig 3. CDV system. (A) 10* points sampled from the CDV attractor, projected to (x;, x;) plane. (B) Example time series for x,; blocked flow

regime is shaded in red. (C) Length-2000 trajectory projected to the first two POD modes (normalized) integrated using the CDV model (left),

5-mode POD projected model (middle) and data-assisted model (right). Despite preserving 99.6% of the total variance, the 5-mode projected
‘model has a single fixed point as opposed to a chaotic attractor. Data-assisted model, however, is able to preserve the geometric features of the
original attractor.
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Fig 4. Results for CDV system. (Row 1) RMSE vs. lead time for 5-mode POD projected model (orange dotted), data-assisted model (blue
dashdotted) and purely data-driven model (green dashed). (Row 2) ACC vs. lead time. (Row 3) A sample trajectory corresponding to zonal
flow—true trajectory is shown (black solid). (Row 4) A sample trajectory involving regime transition (happening around ¢ = 20). For rows 1,3
and 4, plotted values are normalized by the standard deviation of each dimension.
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Intermittent bursts of dissipation in Kolmogorov

du=-u-Vu—Vp+vAu+f
V-u=0

where u = (u,, u,) is the fluid velocity defined over the domain (x, y) € Q = [0, 271] x [0, 271]
with periodic boundary conditions, v = 1/Re is the non-dimensional viscosity equal to recipro-
cal of the Reynolds number and p denotes the pressure field over Q. We consider the flow
driven by the monochromatic Kolmogorov forcing f(x) = (£, f,) with f, = sin(ksy) and f, = 0.
k¢= (0, ky) is the forcing wavenumber.

1 f1,
E(u) =— [ =|u|” dQ,
) =g [ 50
D(u) = — f IVul* d, (18)
1Q Ja

I(u):ﬁfnu-f dQ
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Intermittent bursts of dissipation in Kolmogorov

@ The Kolmogorov flow admits a laminar solution u, = Re/kZsin(kry),
u, = 0. For sufficiently large ks and Re, this laminar solution is
unstable, chaotic and exhibiting intermittent surges in energy input /

and dissipation D.

@ Study the flow under a particular set of parameters Re = 40 and
ks = 4 for which there is the occurrence of extreme events.
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ermittent bursts of dissipation in Kolmogor

Due to spatial periodicity, it is natural to examine the velocity field in Fourier space. The
divergence-free velocity field u admits the following Fourier series expansion:

u(x,f) = Z—”(lkk’l ‘) (_k; )e‘k"‘ (19)

k

where k = (k;, k) is the wavenumber and a(k, t) = —a(—Kk, t) for u to be real-valued. For
notation clarity, we will not explicitly write out the dependence on t from here on. Substituting
Eq (19) into the governing equations Eq (17) we obtain the evolution equations for a4 as (more
details are presented in S1 Appendix)

i) = 37 P LA TR0 (p)a) - kal) - 0y, + ) 20)
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Intermittent bursts of dissipation in Kolmogorov

@ In the reduced model,
Let & = a(0, kr), & = a(1,0), &3 = a(l, kf),
&4, &s, & are the conjugate pairs of &1, &2, &5.

@ This is because in the interest of predicting / and D, the most
revealing interaction to observe is among these nodes.

a(1,0)

a(0,k?)

@ However, only 59% energy are contained in these nodes, so a simple
linear projection could lead to a bad result.
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Intermittent bursts of dissipation in Kolmogorov

@ nistim = 70, ngc = 38. Number of time steps in setup stage = 100,
progressively increase number of time steps in prediction stage from
{10, 30,50, 100}.

@ 100000 trajectories, 80% training, 5% validation, 15% test.

@ Nepochs = 1000, batch size = 250, p; = 60, wp = 0.01, v = 0.98.
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Intermittent bursts of dissipation in Kolmogorov
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Fig 6. Kolmogorov flow—RMSE vs. time. Errors are computed for 10" test trajectories (legend: fully data-driven—green dashed; data-

d—blue dashdotted; triad dotted). The RMSE in each mode is normalized by the corresponding amplitude E(k) = 1/ El|a(k)[’].
Atest trajectory is classified as regular if [a(1, 0)] > 0.4 at = 0 and rare otherwise. Performance for regular, rare and all trajectories are shown in
three columns, Data-assisted model has very similar errors to those of purely data-driven models for regular trajectories, but the performance is
visibly improved for rare events.
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Intermittent bursts of dissipation in Kolmogorov
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Intermittent bursts of dissipation in Kolmogorov
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Conclusion

Goal of the paper: Dimensionality Reduction of ODEs
Approach: Data + ODE Prior (Physics-informed LSTM?)

Testcases on CDV and Navier-Stokes Equations
Also show the ability to predict rare events

Possible future research: Singular perturbation?
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The End
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