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Problem Setup

@ Goal: Predict motions of vessels in extreme sea states

@ Involves computing complex nonlinear wave-body interactions, hence
taxing heavily computational resources

@ Use traditional method to generate dataset

@ Use supervised learning methods to save computation time when
making predictions.

@ Input: Sea surface elevation at specific locations
@ Output: Vessel Motion in 3 DOF(heave, pitch and roll)
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Problem Setup
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Figure 1: Snapshots of the URANS simulations; the color scale (meters) represents sea surface elevation. (a) Catamaran
sailing in regular sth-order Stokes Waves. This constitutes a relatively easy condition to simulate using potential flow
methods. (b) Notional DTMB battleship sailing in World Meteorological Organization (WMO) sea state 8 at Froude
number 0.4. Meshes for this case involve more than 20 million finite volume cells and require several days to compute
on a parallel computer with 300 cores. (See video for DTMB sailing through sea state 8 in supplementary materials).
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Sea Surface Elevation

Ocean waves used to induce motions in the vessels are reconstructed from experimental sea spectra (see
fig. 2) that characterize the stochastic process of sea surface elevations. At a particular spatial location, let
4 ﬁ) be the sea surface elevation as a function of time. Then, this time signal can be defined as a sum of
sinusoidal waves with random phases ¢; between —7 and 71 sampled from a uniform distribution, and
incommensurate frequencies w; spanning the frequency range of the spectrum, i.e.,

() = Zn:ai cos (wit +¢;), (4)

i=1

which is a Gaussian probability density function as n becomes large in accordance with the central limit
theorem. The wave amplitude for a given frequency is obtained from the following relation,

1
30 = 8 () Aw, )

where S (w) is the modified Pierson-Moskowitz spectrum [28] with T as the mean wave period:
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Vessel Motion

The data set is obtained from a viscous Volume-of-Fluid (VOF) URANS solver (STAR-CCM+). The equations
solved are the averaged continuity and momentum equations for incompressible fluids:
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where Tj;, in eq. (2), are the components of the averaged viscous force tensor, p is the averaged pressure

and % are the Cartesian components of the averaged velocity. In eq. (2), ul’»u; are the Reynolds stresses, p the
fluid density, and y the dynamic viscosity.
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Functional Approximation

The results presented in [1] can be summarized as follows. Given very mild conditions, a functional defined
on a compact set in C[a, b] or LP[a, b] (spaces of infinite dimensions) can be approximated arbitrarily well
by a neural network with just one hidden layer. Particularly, given U a compact set in C [a, b], 0 (abounded
sigmoidal function) and F a continuous functional defined on U, then Yu € U, F(u) can be approximated
by

F(u) =

t’]z
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In the above expression, c;, §j;, 6; are real numbers and u(x;) is the value that u takes at x;.
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Operator Approximation

1. If u € U, then u|1-“ eU,Vae R",a>0.

2.V a € R,a > 0,Uy, is a compact set in Cy (ITj_ [ax — ag, ax +a;]) or a compact set in
LY, (TT¢- [ox — ag,  + ag]), where V stands for R7.

3. Then, if we let (Gu)(a) = ((Gu)l(:x),. . (Gu)qz(tx)), consequently each (Gu);() will be a contin-
uous functional defined over Uy, with the corresponding topology in Cy (ITy_; [tk— @k, &k + @]
or LY, (TTf-y [k — ag, ak + a]).-

We consider that a map G from X; to X, has approximately finite memory if Ve > 0 there is a > 0 such that:

‘(Gu)j(/x)—(GWalau)]-(oc)|<e, j=1....420 YeeR  uel

Theorem: If U and G satisfy all the assumptions (1-3) made previously, and G is of approximately finite
memory, then Ve > 0, 3a > 0, m a positive integer, (m + 1)" points in [T{_; [ax — ax, ax + ax], N a positive
integer, constants ¢;(G, &, 4) that only depend on G, &, 4, and g, X (m + 1)" - vectors &;, i = 1,...,N, such
that:

<e j=L12,...,q2.

N —
(Gu)j(8) = Loci(Gra,a)e (& T +6:)

To conclude, we would like to place emphasis on the assumption of approximately finite memory. This
assumption provides the blocks to build the functional approximation as a sum of functionals defined in the
subsets given by the window operator, previously defined. During the empirical analysis, we benchmark
against a case for which we hope that approximately finite memory will allow representing the functional
arbitrarily well from the subsets given by the window operator.
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Approximation
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Figure 3: Schematic of the physical problem simulated and inputs and outputs of the deep LSTM RNN. The inputs for training
are sea surface elevations in the form of time series, while the corresponding outputs are the vessel motions. Sea
surface elevations are recorded at specific point locations that can be chosen from lines over the free surface. Vessel
motions in the training cases are obtained from an URANS solver. Shown here as inputs (X(t)) are two unseen surface
elevations, which serve as test cases in our simulation example for the DTMB vessel.
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Catamaran Vessel
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Figure 4: Comparison of LSTM and GRU for a sth-order Stokes regular wave (wave amplitude is 0.15m) for the catamaran vessel,
The data-set is composed of 5 waves of varying amplitude. The first 4 waves are used as training cases (for 20000 steps)
while the last wave (shown here) is used for testing. Each time step corresponds to At = 0.06255.

Loss: L=10 (Vi — V)2
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Catamaran Vessel

@ The pitch motion is modelled better than the heave motion.

@ Shallow network is adequate in approximating the two DOF
catamaran vessel subject to irregular waves.
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Figure 6: LSTM netuwork (20 Layer) for the catamaran vessel subject to irregular waves. The left column (a, ©) shows
the vertical and angular vessel motions after training with three different sea state realizations; one such realization is
shown in fig. 6a. The right column (b, d) shows the vertical and angular vessel motions for testing given the inputs
indicated in fig. 6b. Each time step corresponds to Af = 0.0625.
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Catamaran Vessel

@ The model is capable of making long time prediction.
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DTBM Vessel

@ Add one dimension in input: Use profile of the wave in the
longitudinal direction and transversal direction.

@ Add one dimension in output: Model heave, pitch and roll.
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DTBM Vessel

S (Yi= Vi)
So71(Yi—mean(Y)))?

@ Result is worse than the previous one.

@ Loss L =

(@) RsE - ocsto () RSE = 00773
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Conclusion

@ Good prediction results of the motion of vessel can be obtained in a

much shorter time than traditional methods, without sacrifice of too
much accuracy.

@ Maybe(?) the link between theory and experiment need more careful
explanation. Can try DeepONet in the future.
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The End
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