Paper Review of Antisymmetric RNN

Bo Chang, Minmin Chen, Eldad Haber, Ed H. Chi
University of British Columbia, Google Brain

January 3, 2020

Zhen Zhang Antisymmetric RNN January 3, 2020 1/25

Table of Contents

© RNN and Its Trainability

© Dynamical System View of RNN
© Antisymmetric RNN

@ Numerical Results

© Pytorch Implementation

@ Conclusion

Zhen Zhang Antisymmetric RNN January 3, 2020 2/25

Recurrent Neural Networks

@ Recurrent Neural Networks(RNN) have found widespread use across a
variety of domains from language modeling, machine translation to
speech recognition, recommendation systems and time series
prediction.

@ A common misunderstanding is that RNN has been completely
replaced by transformer-based models. This is correct for most
language modeling tasks, but for many other tasks it's still SOTA.

Multivariate Time Series Forecasting on MIMIC-III

MSE
/

Other methods - State-of-the-art methods

Figure: SOTA for Time Series Forecasting

Zhen Zhang Antisymmetric RNN January 3, 2020 3/25

Trainability of RNN

RNN faces two main drawbacks:

@ Hard to parallelize

e Vanishing/Exploding Gradient Problem(this paper)
A lot of Variants are proposed to solve the problem:

e LSTM

e GRU

° ...

But lack math theory.

Zhen Zhang Antisymmetric RNN January 3, 2020 4/25

Vanishing/Exploding Gradient Problem

@ RNN model: Input x; from t =0 to t = tp.
hy = tanh(Wihe—1 + Woxe—1 + b)

Training: minimize £ := 30 (L, = >, L(h¢) to get Wy, Wa and
b.

9E = 9L: OL, Z@Lt dhy Ohy

90 £ 90' 00 L Ohy Ohy 00
dhe v Oh 1. ,
e oy W' diag(tanh’(hi_1))

Zhen Zhang Antisymmetric RNN January 3, 2020 5/25

Table of Contents

© RNN and Its Trainability

© Dynamical System View of RNN
© Antisymmetric RNN

@ Numerical Results

© Pytorch Implementation

@ Conclusion

Zhen Zhang Antisymmetric RNN January 3, 2020 6/25

Dynamical System View of RNN

They add a residual connection to change original formula
he = tanh(Wihe—1 + Waxi—1 + b) to

hy = he—1 + etanh(Wyhy—1 + Waxe_1 + b) (1)
It can be seen this is the forward Euler discretization of
H'(t) = tanh(W4h(t) + Wax(t) + b) (2)

(2) is the continuous analogue of (1). To study the stability of (1), it is
good to first study the stability of (2).

Zhen Zhang Antisymmetric RNN January 3, 2020 7/25

Stability of ODE

We give the definition and criterion for the stability of A'(t) =
which is a general form of (2).

A solution h(t) of the ODE H'(t) = f(h(t)) with initial condition h(0) is
stable if for any € > 0, there exists a § > 0 such that any other solution
h(t) of the ODE with initial condition h(0) satisfying [h(0) — h(0)| < &

also satisfies |h(t) — h(t)| < e for all t > 0.

Theorem
The solution of an ODE is stable if

_max_Re(Ai(J(£)) <0,V¢ >0, (3)
i=1,2,...,n

where J(t) is the Jacobian matrix of f.

v

Zhen Zhang Antisymmetric RNN January 3, 2020 8/25

Stability and Trainability

d (0h(t)\ Oh(t)
dt (ah(O)) =050)
For notational simplicity, define A(t) = gzgég, then we have
dA(t)
g = JDAR), A0) =1 (5)

This is a linear ODE with solution A(t) = et = PeM)tP~1 assuming
the Jacobian J does not vary or vary slowly over time.

When Re(A(J)) ~ 0, the magnitude of A(t) is approximately constant in
time, thus no exploding or vanishing gradient problems.

Zhen Zhang Antisymmetric RNN January 3, 2020 9/25

Table of Contents

© RNN and Its Trainability

© Dynamical System View of RNN
© Antisymmetric RNN

@ Numerical Results

© Pytorch Implementation

@ Conclusion

Zhen Zhang Antisymmetric RNN January 3, 2020 10/25

RNN Reuvisited

@ Back to the RNN model, where f(t) = tanh(Wih(t) + Wax(t) + b),
then J(t) = diag[tanh’ (W4 h(t) + Wax(t) + b)]Wi.

o If the eigenvalues of W are all imaginary, then the eigenvalue of J
are all imaginary, which is what we want.

@ Antisymmetric matrices have imaginary eigenvalues!
e Solution: Let Wy =W — WT

@ Proposed Scheme:

he = hi_1 + etanh((W — WT)h,_1 + Wax; + b) (6)

Zhen Zhang Antisymmetric RNN January 3, 2020 11/25

Diffusion is All You Need

However, a problem is encountered:

The forward propagation in Equation (6) is stable if

max |1+ eXi(J)] <1 (7)

i=1,2,....n

Since Aj(J;) is imaginary, the scheme we proposed is always unstable.
A diffusion term is added to rescue, and this gives the final form of
Antisymmetric RNN:

he = he_1 + etanh(W — WT — 1) hs_1 4+ Wax,_1 + b), (8)

where v > 0 is a hyperparameter that controls the strength of diffusion.

Zhen Zhang Antisymmetric RNN January 3, 2020 12/25

Gating Mechanism

A variation of above scheme is also proposed:

ze=o0(W—=WT —yDhe_1 + Wyx: + b,),

(9)
hy = hy_1 + ezz o tanh(W — WT —~1)he_q1 + Wix: + by)

Gating is commonly employed in RNNs. Each gate is often modeled as a
single layer network taking the previous hidden state h;_; and data x; as
inputs, followed by a sigmoid activation.

Zhen Zhang Antisymmetric RNN January 3, 2020 13/25

Table of Contents

© RNN and Its Trainability

© Dynamical System View of RNN
© Antisymmetric RNN

@ Numerical Results

© Pytorch Implementation

@ Conclusion

Zhen Zhang Antisymmetric RNN January 3, 2020 14 /25

Simulation

4 SIMULATION

Zhen Zhan

0s * os ¥ 0s * o *
] N7
/7 \ I\
s % s s ow s %
L I ! *

(d) Vanilla RNN with

(c) Vanilla RNN with
a random orthogonal

a random orthogonal
weight matrix (seed = 0).

(b) Vanilla RNN with an

(a) Vanilla RNN with a
identity weight matrix.

random weight matrix.

-10 -05 00 05 10

05 10

“10 05 00

10

0s

“10 05 00

(h) RNN with feedback
with imaginary eigenval-
ues and diffusion.

(g) RNN with feedback
with imaginary eigenval-
ues.

(f) RNN with feedback
with negative eigenval-
ues.

Figure 1: Visualization of the dynamics of RNNs and RNNs with feedback using different weight

(e) RNN with feedback
with positive eigenvalues.

matrices.

Figure: Dynamics of a Toy 2D System

Antisymmetric RNN January 3, 2020

Pixel by Pixel MNIST

MNIST images are grayscale with 28 x 28 pixels. The 784 pixels are
presented sequentially to the recurrent net, one pixel at a time in scanline
order (starting at the top left corner of the image and ending at the
bottom right corner). In other words, the input dimension m =1 and
number of time steps T = 784. The pixel-by-pixel MNIST task is to
predict the digit of the MNIST image after seeing all 784 pixels.

method MNIST pMNIST #units # params
LSTM (Arjovsky et al., 2016ﬂ 97.3% 92.6% 128 68k
FC uRNN (Wisdom et al., 2016) 92.8% 92.1% 116 16k
FC uRNN (Wisdom et al., 2016) 96.9% 94.1% 512 270k
Soft orthogonal (Vorontsov et al., 2017) 94.1% 91.4% 128 18k
KRU (Jose et al., 2017) 96.4% 94.5% 512 11k
AntisymmetricRNN 98.0% 95.8% 128 10k
AntisymmetricRNN w/ gating 98.8% 93.1% 128 10k

Table 1: Evaluation accuracy on pixel-by-pixel MNIST and permuted MNIST.

Figure: Prediction Accuracy on Pixel by Pixel MNIST

Zhen Zhang Antisymmetric RNN January 3, 2020 16 /25

Pixel by Pixel CIFAR-10

method pixel-by-pixel noise padded # units # params
LSTM 59.7% 11.6% 128 69k
Ablation model 54.6% 46.2% 196 42k
AntisymmetricRNN 58.7% 48.3% 256 36k
AntisymmetricRNN w/ gating 62.2% 54.7% 256 37k

Table 2: Evaluation accuracy on pixel-by-pixel CIFAR-10 and noise padded CIFAR-10.

Model
<= ASRNN,y=0.001
~=~ ASRNNy=0.01

3

- ASRNNy=0.1

—— ASRNNy=1

< ASRNNy=5
ASRNN,y = 10

Eigenvalues

3

= LSTM

. . v
100 200 400 800
Time step T

Figure: Eigenvalues of the Jacobian matrix in different models, trained on the
noise padded CIFAR10

Zhen Zhang Antisymmetric RNN January 3, 2020

17 /25

Experimental Details

Let m be the input dimension and n be the number of hidden units. The input to hidden matrices are
initialized to A/ (0, 1/m). The hidden to hidden matrices are initialized to A'(0, o2 /n), where o, is
chosen from o, € {0, 1,2, 4,8,16}. The bias terms are initialized to zero, except the forget gate bias
of LSTM is initialized to 1, as suggested by Jozefowicz et al. (2015). For AntisymmetricRNNs, the
step size € € {0.01,0.1, 1} and diffusion v € {0.001, 0.01,0.1,1.0}. We use SGD with momentum
and Adagrad (Duchi et al., 2011) as optimizers, with batch size of 128 and learning rate chosen from
{0.1,0.2,0.3,0.4,0.5,0.75,1}. On MNIST and pixel-by-pixel CIFAR-10, all the models are trained
for 50,000 iterations. On noise padded CIFAR-10, models are trained for 10,000 iterations. We use
the standard train/test split of MNIST and CIFAR-10. The performance measure is the classification
accuracy evaluated on the test set.

Zhen Zhang Antisymmetric RNN January 3, 2020 18 /25

Table of Contents

© RNN and Its Trainability

© Dynamical System View of RNN
© Antisymmetric RNN

@ Numerical Results

© Pytorch Implementation

@ Conclusion

Zhen Zhang Antisymmetric RNN January 3, 2020 19/25

Why Pytorch

@ RNNs could be really slow if we use standard Tensorflow/PyTorch
operators, because overhead is created: most Tensorflow/PyTorch
operations launch at least one kernel on the GPU and RNNs generally
run many operations due to their recurrent nature

@ Both Tensorflow and Pytorch support CUDNNLSTM layers, which
uses a fused kernel. It increases the speed of computation a lot, but it
is difficult modify the base implementation(change the architecture).

@ We can apply TorchScript in Pytorch to fuse operations and optimize
our code automatically, launching fewer, more optimized kernels on
the GPU.

Zhen Zhang Antisymmetric RNN January 3, 2020 20/25

Custom RNN

class ASNNCell(jit.ScriptModule):
def __init__(self, input_size, hidden_size, sigma):
super (ASNNCell, self).__init_ ()
self.weight_ih = nn.Parameter(torch.randn(hidden_size,
input_size)/input_size)

self.weight_hh = nn.Parameter(torch.randn(hidden_size, hidden_size)\
*sigmaxsigma/hidden_size)

self.bias = nn.Parameter(torch.zeros(hidden_size))

@jit.script_method
def forward(self, inputs, hx, gammai):

hy = hx + 0.01 % torch.tanh(torch.mm(inputs, self.weight_ih.t()) +
torch.mm(hx, (self.weight_hh.t()-self.weight_hh - gammai))
+ self.bias)

return hy

class ASNNLayer(jit.ScriptModule):
def __init__(self, cell, xcell_args):
super (ASNNLayer, self).__init__()
self.cell = cell(xcell_args)

@jit.script_method
def forward(self, inputs, state, gammai)
inputs = inputs.unbind(@)
outputs = torch.jit.annotate(List[Tensor], [])
for i in range(len(inputs)):
state = self.cell(inputs[i]l, state, gammai)
outputs += [state]
return torch.stack(outputs), [state]

Figure: Code for Antisymmetric RNN

Zhen Zha

Antisymmetric RNN

21/25

Speed Comparison

—— LSTM forward
60 4 —— LSTM backward
—— CuDNN forward
—— CUDNN backward

Time (ms)

fusion loop unrolling batch mm miscs

Figure: Comparison of LSTM with and without CuDNN Acceleration

Table: Time to train a single epoch on MNIST (second)

PyTorch(+) PyTorch TF(+) TF
23.10 71.86 49.10 260.33

Zhen Zhang Antisymmetric RNN January 3, 2020 22 /25

Table of Contents

© RNN and Its Trainability

© Dynamical System View of RNN
© Antisymmetric RNN

@ Numerical Results

© Pytorch Implementation

@ Conclusion

Zhen Zhang Antisymmetric RNN January 3, 2020 23/25

@ A new perspective on the trainability of RNNs from dynamical system
point of view is given.

@ Antisymmetric RNN is proposed based on discretization of ODEs that
satisfy the critical criterion.

@ The models proposed have demonstrated competitive performance
over strong recurrent baselines on a set of benchmark tasks.

Zhen Zhang Antisymmetric RNN January 3, 2020 24 /25

The End

Zhen Zhang Antisymmetric RNN January 3, 2020 25/25

	RNN and Its Trainability
	Dynamical System View of RNN
	Antisymmetric RNN
	Numerical Results
	Pytorch Implementation
	Conclusion

