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Recurrent Neural Networks

Recurrent Neural Networks(RNN) have found widespread use across a
variety of domains from language modeling, machine translation to
speech recognition, recommendation systems and time series
prediction.

A common misunderstanding is that RNN has been completely
replaced by transformer-based models. This is correct for most
language modeling tasks, but for many other tasks it’s still SOTA.

Figure: SOTA for Time Series Forecasting
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Trainability of RNN

RNN faces two main drawbacks:

Hard to parallelize

Vanishing/Exploding Gradient Problem(this paper)

A lot of Variants are proposed to solve the problem:

LSTM

GRU

...

But lack math theory.
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Vanishing/Exploding Gradient Problem

RNN model: Input xt from t = 0 to t = t0.

ht = tanh(W1ht−1 + W2xt−1 + b)

Training: minimize E :=
∑t0

t=0 Lt =
∑t0

t=0 L(ht) to get W1, W2 and
b.

∂E
∂θ

=

t0∑
t=0

∂Lt
∂θ

,
∂Lt
∂θ

=
t∑

k=0

∂Lt
∂ht

∂ht
∂hk

∂hk
∂θ

,

∂ht
∂hk

=
t∏

i=k+1

∂hi
∂hi−1

= W T
1 diag(tanh′(hi−1))
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Dynamical System View of RNN

They add a residual connection to change original formula
ht = tanh(W1ht−1 + W2xt−1 + b) to

ht = ht−1 + ε tanh(W1ht−1 + W2xt−1 + b) (1)

It can be seen this is the forward Euler discretization of

h′(t) = tanh(W1h(t) + W2x(t) + b) (2)

(2) is the continuous analogue of (1). To study the stability of (1), it is
good to first study the stability of (2).
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Stability of ODE

We give the definition and criterion for the stability of h′(t) = f (h(t)),
which is a general form of (2).

Definition

A solution h(t) of the ODE h′(t) = f (h(t)) with initial condition h(0) is
stable if for any ε > 0, there exists a δ > 0 such that any other solution
h̃(t) of the ODE with initial condition h̃(0) satisfying |h(0)− h̃(0)| ≤ δ
also satisfies |h(t)− h̃(t)| ≤ ε for all t ≥ 0.

Theorem

The solution of an ODE is stable if

max
i=1,2,...,n

Re(λi (J(t))) ≤ 0, ∀t ≥ 0, (3)

where J(t) is the Jacobian matrix of f .
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Stability and Trainability

Theorem

d

dt

(
∂h(t)

∂h(0)

)
= J(t)

∂h(t)

∂h(0)
(4)

For notational simplicity, define A(t) = ∂h(t)
∂h(0) , then we have

dA(t)

dt
= J(t)A(t), A(0) = I (5)

This is a linear ODE with solution A(t) = eJ·t = PeΛ(J)tP−1, assuming
the Jacobian J does not vary or vary slowly over time.
When Re(Λ(J)) ≈ 0, the magnitude of A(t) is approximately constant in
time, thus no exploding or vanishing gradient problems.
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RNN Revisited

Back to the RNN model, where f (t) = tanh(W1h(t) + W2x(t) + b),
then J(t) = diag [tanh′(W1h(t) + W2x(t) + b)]W1.

If the eigenvalues of W1 are all imaginary, then the eigenvalue of J
are all imaginary, which is what we want.

Antisymmetric matrices have imaginary eigenvalues!

Solution: Let W1 = W −W T

Proposed Scheme:

ht = ht−1 + ε tanh((W −W T )ht−1 + W2xt + b) (6)
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Diffusion is All You Need

However, a problem is encountered:

Theorem

The forward propagation in Equation (6) is stable if

max
i=1,2,...,n

|1 + ελi (Jt)| ≤ 1 (7)

Since λi (Jt) is imaginary, the scheme we proposed is always unstable.
A diffusion term is added to rescue, and this gives the final form of
Antisymmetric RNN:

ht = ht−1 + ε tanh((W −W T − γI )ht−1 + W2xt−1 + b), (8)

where γ > 0 is a hyperparameter that controls the strength of diffusion.
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Gating Mechanism

A variation of above scheme is also proposed:

zt = σ((W −W T − γI )ht−1 + Wzxt + bz),

ht = ht−1 + εzt ◦ tanh((W −W T − γI )ht−1 + Whxt + bh)
(9)

Gating is commonly employed in RNNs. Each gate is often modeled as a
single layer network taking the previous hidden state ht−1 and data xt as
inputs, followed by a sigmoid activation.
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Simulation

Figure: Dynamics of a Toy 2D System
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Pixel by Pixel MNIST

MNIST images are grayscale with 28× 28 pixels. The 784 pixels are
presented sequentially to the recurrent net, one pixel at a time in scanline
order (starting at the top left corner of the image and ending at the
bottom right corner). In other words, the input dimension m = 1 and
number of time steps T = 784. The pixel-by-pixel MNIST task is to
predict the digit of the MNIST image after seeing all 784 pixels.

Figure: Prediction Accuracy on Pixel by Pixel MNIST
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Pixel by Pixel CIFAR-10

Figure: Eigenvalues of the Jacobian matrix in different models, trained on the
noise padded CIFAR10
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Experimental Details
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Why Pytorch

RNNs could be really slow if we use standard Tensorflow/PyTorch
operators, because overhead is created: most Tensorflow/PyTorch
operations launch at least one kernel on the GPU and RNNs generally
run many operations due to their recurrent nature

Both Tensorflow and Pytorch support CUDNNLSTM layers, which
uses a fused kernel. It increases the speed of computation a lot, but it
is difficult modify the base implementation(change the architecture).

We can apply TorchScript in Pytorch to fuse operations and optimize
our code automatically, launching fewer, more optimized kernels on
the GPU.
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Custom RNN

Figure: Code for Antisymmetric RNN
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Speed Comparison

Figure: Comparison of LSTM with and without CuDNN Acceleration

Table: Time to train a single epoch on MNIST (second)

PyTorch(+) PyTorch TF(+) TF

23.10 71.86 49.10 260.33
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A new perspective on the trainability of RNNs from dynamical system
point of view is given.

Antisymmetric RNN is proposed based on discretization of ODEs that
satisfy the critical criterion.

The models proposed have demonstrated competitive performance
over strong recurrent baselines on a set of benchmark tasks.

Zhen Zhang Antisymmetric RNN January 3, 2020 24 / 25



The End
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